Structural determinants of fluorochemical-induced mitochondrial dysfunction.
نویسندگان
چکیده
Perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS) are thought to induce peroxisome proliferation and interfere with mitochondrial metabolic pathways. Direct measurements revealed that PFOA and the unsubstituted sulfonamide of perfluorooctane (FOSA) uncouple mitochondrial respiration by increasing proton conductance. The purpose of this investigation was to characterize structural determinants responsible for the mitochondrial uncoupling effect of several structurally related fluorochemicals. Included in the study were PFOA, PFOS, FOSA, the N-acetate of FOSA (perfluorooctanesulfonamidoacetate, FOSAA), N-ethylperfluorooctanesulfonamide (N-EtFOSA), and the N-ethyl alcohol [2-(N-ethylperfluorooctanesulfonamido)ethyl alcohol, N-EtFOSE] and N-acetic acid (N-ethylperfluorooctanesulfonamidoacetate, N-EtFOSAA) of N-EtFOSA. Each test compound was dissolved in ethanol and added directly to an incubation medium containing substrate-energized rat liver mitochondria. Mitochondrial respiration and membrane potential were measured concurrently using an oxygen electrode and a TPP+ -selective electrode, respectively. All of the compounds tested, at sufficiently high concentrations, had the capacity to interfere with mitochondrial respiration, albeit via different mechanisms and with varying potencies. At sufficiently high concentrations, the free acids PFOA and PFOS caused a slight increase in the intrinsic proton leak of the mitochondrial inner membrane, which resembled a surfactant-like change in membrane fluidity. Similar effects were observed with the sulfonamide N-EtFOSE. Another fully substituted sulfonamide, N-EtFOSAA, at high concentrations caused inhibition of respiration, the release of cytochrome c, and high-amplitude swelling of mitochondria. The swelling was prevented by cyclosporin A or by EGTA, indicating that this compound induced the mitochondrial permeability transition. The unsubstituted and mono-substituted amides FOSA, N-EtFOSA, and FOSAA all exerted a strong uncoupling effect on mitochondria resembling that of protonophoric uncouplers. Among these compounds, FOSA was a very potent uncoupler of oxidative phosphorylation, with an IC50 of approximately 1 microM. These data suggest that the protonated nitrogen atom with a favorable pKa is essential for the uncoupling action of perfluorooctane sulfonamides in mitochondria, which may be critical to the mechanism by which these compounds interfere with mitochondrial metabolism to induce peroxisome proliferation in vivo.
منابع مشابه
Curcumin Ameliorates Sodium Valproate Induced Neurotoxicity through Suppressing Oxidative Stress and Preventing Mitochondrial Impairments
Background and purpose: Curcumin is a natural polyphenolic compound in turmeric (Curcuma longa). Curcumin has potent free radical scavenger and antioxidant properties that could significantly reduce oxidative damage. Oxidative stress and mitochondrial dysfunction contribute to valproate sodium induced tissue damage. This study investigated the protective effects of curcumin against valproate so...
متن کاملاثرات محافظتی رسوراترول در برابر اختلال عملکرد میتوکندریایی ناشی از پاراکوات
Background and purpose: Resveratrol (RSV) is a naturally existing polyphenolic compound abundantly found in grapes and several plants. It has potent free radical scavenger and antioxidative properties with significant effects in reducing oxidative damage. Oxidative stress and mitochondrial dysfunction contribute to PQ induced tissue damage. In this study, the protective effect of RSV was invest...
متن کاملInhibitory Effects of Resveratrol against Mitochondrial Toxicity Induced by Perfluorooctanoic Acid in Isolated Liver Mitochondria of Male Rats
Background and purpose: Resveratrol (RSV) is a naturally polyphenolic compound found in grapes and other plant sources. It has potent free radical scavenger and antioxidative properties.The aim of this study was to evaluate the protective effect of resveratrol against Perfluorooctanoic acid (PFOA) induced mitochondrial toxicity in isolated liver mitochondria. Materials and methods: Mitochondr...
متن کاملMitochondrial Toxicity of Depleted Uranium: Protection by Beta-Glucan
Considerable evidence suggests that mitochondrial dysfunction contributes to the toxicity of uranyl acetate (UA), a soluble salt of depleted uranium (DU). We examined the ability of the two antioxidants, beta-glucan and butylated hydroxyl toluene (BHT), to prevent UA-induced mitochondrial dysfunction using rat-isolated kidney mitochondria. Beta-glucan (150 nM) and BHT (20 nM) attenuated UA-indu...
متن کاملMitochondrial Toxicity of Depleted Uranium: Protection by Beta-Glucan
Considerable evidence suggests that mitochondrial dysfunction contributes to the toxicity of uranyl acetate (UA), a soluble salt of depleted uranium (DU). We examined the ability of the two antioxidants, beta-glucan and butylated hydroxyl toluene (BHT), to prevent UA-induced mitochondrial dysfunction using rat-isolated kidney mitochondria. Beta-glucan (150 nM) and BHT (20 nM) attenuated UA-indu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Toxicological sciences : an official journal of the Society of Toxicology
دوره 66 2 شماره
صفحات -
تاریخ انتشار 2002